ThyssenKrupp Materials International

Ferritic Corrosion Resisting Steel

Material Data Sheet

Steel Designation: Name Material No.

X2CrTiNb18 1.4509

Scope

This data sheet applies to hot and cold rolled sheet and strip.

Application

Rail and road vehicles; container construction; warehouse and transportation equipment of the sugar industry; absorbing duct; coal mining.

Chemical composition (heat analysis in %)

Product form	С	Si	Mn	Р	S	N	Cr	Мо	Nb	Ti
С, Н	≤ 0.030	≤ 1.00	≤ 1.00	≤ 0.040	≤ 0.015	-	17.5-18.5	-	[3xC+0.30] to 1.00	0.10-0.60

C = cold rolled sheet; H = hot rolled sheet;

Mechanical properties at room temperature in solution annealed condition

Produc	1881 Nederland 1891 1881 888 1	Thickness mm max.	Yield st R _p N/mm² min. (longitudinal)	nength 0,2 N/mm² min. (transverse)	Tensile strength R _m N/mm²	Elongation min. in % A _{80 mm} ¹³ A ² < 3 mm
3C		8	230	250	430 bis 630	

Values apply for test pieces with a gauge length of 80 mm and a width of 20 mm. Test pieces with a gauge length of 50 mm and a width of 12,5 mm can also be used.

Minimum values for the 0,2 %-proof strength of ferritic steels at elevated temperatures

		0,2 %-proof strength at a temperature (in °C) of							
Product form	Heat treatment condition	100	150	200	250	300	350	400	
	TOTAL CONTRIBUTION		N/mm² min.						
C, H	+A	230	220	210	205	200	180	-	

⁺A = annealed

Reference data for some physical properties (for guidance only)

Density at 20 °C	Modulus of elasticity kN/mm² at			Thermal conductivity at 20 °C	Specific thermal capacity at 20 °C	Specific electrical resistivity at 20 °C
Kg/dm³	20 °C	200 °C	400 °C	W/m K	J/kg K	Ω mm²/m
7,7	220	210	195	25	460	0,60

Mean coefficient of thermal expansion $10^{-6}\,\mathrm{K^{-1}}$ between 20 °C and

		•		
100 °C	200 °C	300 °C	400 °C	500 °C
10,0	10,0	10,5	10,5	-

²⁾ Values apply for test pieces with a gauge length of 5,65 $\sqrt{S_o}$.

ThyssenKrupp Materials International

Guidelines for the temperatures for hot forming and heat treatment¹⁾

Hot fo	rming	Heat treatment			
Temperature °C	Type of cooling	Annealing	Type of cooling	Microstructure	
1100 - 800	Air	870 – 930°C ²⁾	Air, water	Ferrite	

¹⁾ For simulative heat treated test pieces the temperatures for solution annealing have to be agreed.

Processing / Welding

Standard welding processes for this steel grades are:

TIG-welding

Arc welding (E)

MAG-welding solid wire

Draces	Filler metal				
Process	similar	higher alloyed			
TIG	-	Thermanit			
MAG solid wire	Thermanit 409 Cb	Thermanit			
Arc welding (E)	-	Thermanit			

This steel can be weld according to the above mentioned processes considering the general rules of technology by hand and automatically welding (except gas-welding).

Processing

Cold forming with a small degree of deformation is easily feasible at temperatures higher than room temperature. Sharp bending parallel to rolling direction should be avoided. Plates with larger thicknesses and/or higher degree of deformation should be preheated up to 200 to 400 °C. If applicable, hot forming at 700 to 900 °C could be necessary.

The corrosion resistance is affected by hot forming or annealing colors after welding or scaling. These have to be removed by pickling (pickling solution), grinding or sand blasting. Only iron-free tools are allowed for these workings. Machining does not differ from machining of unalloyed carbon steels with comparable respectively corresponding strength.

Editor

THYSSENKRUPP MATERIALS INTERNATIONAL GMBH Technical Sales / Quality Management Am Thyssenhaus 1 45128 Essen

References

DIN EN 10088-2:2005-09

Beuth Verlag GmbH, Postfach, D-10772 Berlin

Böhler Schweißtechnik Deutschland GmbH

Important Hint

Information given in this data sheet about the condition or usability of materials respectively products are no warranty for their properties, but act as a description.

The information, given on for advice, comply to the experiences of the manufacturer as well as our own.

We cannot give warranty for the results of processing and application of the products.

If heat treatment is carried out in a continuous annealing furnace, usually the upper area of the mentioned temperature range is preferred or even exceeded.