Austenitic Corrosion Res	enitic Corrosion Resistant Steel Material Data She		
Steel Designation:	Name	Material No.	
	X2CrNiMo17-12-2	1.4404	

Scope

This data sheet applies to hot and cold rolled sheet and strip, semi-finished products, rods, rolled wire and profiles as well as seamless and welded tubes for pressure purposes.

Application

Construction encasement, doors, windows and armatures; offshore modules; cisterns and pipes for chemical tanker; production, warehousing and overland transportation of chemicals, food and beverages; pharmacy, synthetic fiber, paper and textile plants; pressure vessels.

Due to the low C-content, the resistance to intergranular corrosion is also guaranteed in the welded condition.

Chemical composition	(heat analysis in %)
----------------------	----------------------

.

. .

Product form	С	Si	Mn	Р	S	Ν	Cr	Мо	Ni
С, Н, Р	≤ 0.030	≤ 1.00	≤ 2.00	≤ 0.045	≤ 0.015 ¹⁾	≤ 0.11	16.50 - 18.50	2.00 - 2.50	10.00 - 13.00
L	≤ 0.030	≤ 1.00	≤ 2.00	≤ 0.045	≤ 0.030 ¹⁾	≤ 0.11	16.50 - 18.50	2.00 - 2.50	10.00 - 13.00 ²⁾
₹~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	≤ 0.030	≤ 1.00	≤ 2.00	≤ 0.045 ³⁾	≤ 0.015 ³⁾	≤ 0.11	16.50 - 18.50	2.00 - 2.50	10.00 - 13.00
Τ _s	≤ 0.030	_ ≤ 1.00	≤ 2.00	≤ 0.040	≤ 0.015 ¹⁾	≤ 0.11	16.50 - 18.50	2.00 - 2.50	10.00 - 13.00 ²⁾

C = cold rolled strip; H = hot rolled strip; P = hot rolled sheet; L = semi-finished products, rods, rolled wire and profiles

 T_w = welded tubes; T_s = seamless tubes

¹⁾ For machinability a controlled sulphur content of 0.015-0.030 % are recommended and permitted.

.

²⁾ If it is necessary to minimize the content of delta ferrite, it is allowed to increase the maximum content of nickel by 1.5 %.

³⁾ For tubes, which are welded without filler metal, P + S max. 0.040 %.

Mechanical properties at room temperature in solution annealed condition

Product	∽∽∓iek- ness	~0 <u>,</u> 2%~	<u>1</u> .%	strength	Elong	ation	mpai //	ct energy
101111	11033	R _{p0,2}	trength R _{p1,0}	R _m	A ¹⁾ % _{min}	A ¹⁾ % _{min}	Room te	emperature mm thick
	mm _{max}	N/m	m² _{min}	N/mm²	(longitudinal)	(transvers)	J _{min} (longitudinal)	J _{min} (transverse)
С	8	240 ³⁾	270 ³⁾	530 - 680 ³⁾	-	40	-	-
Н	13,5	220 ³⁾	260 ³⁾	530 - 680 ³⁾	-	40	100	60
Р	75	220 ³⁾	260 ³⁾	520 - 670 ³⁾	-	45	100	60
L	160	2004)	235 ⁴⁾	500 - 700 ⁴⁾	40	-	100	-
L	250 ²⁾	2005)	235 ⁵⁾	500 - 700 ³⁾	-	30	-	60
T _{W/S}	60	190 ⁶⁾	225 ⁶⁾	490 - 690 ⁴⁾	40	30	100	60 ⁷⁾

 $^{\rm 1)}\mbox{Gauge}$ length and thickness according to DIN EN

⁴⁾Longitudinal test piece

²⁾ > 160 mm

⁵⁾Transverse test piece

³⁾ Transverse test piece, with product widths < 300 mm longitudinal test piece ⁶⁾ Longitudinal test piece, external diameter > 508 mm transverse test piece ⁷⁾ min. 60 J at -196 °C

Reference data on some physical properties

Density at 20 °C			of elasticity	,	Thermal conductiv- ity at 20 °C	Specific thermal capacity at 20 °C	Specific electrical resistivity at 20 °C	
kg/dm³	20 °C	200 °C	400 °C	500 °C	W/m K	J/kg K	Ω mm²/m	
8,0	200	200 186 172 165		15	500	0,75		
Mean coefficient of thermal expansion 10 ⁻⁶ K ⁻¹ between 20 °C and								
100 °C		200 °C		300 °C	400 °C	500 °C		
16,0		16,5			17,0	17,5	18,0	

Guidelines on the temperatures for hot forming and heat treatment¹⁾

Ho	Heat treatment AT (solution annealed), Microstructure			
Temperature °C	Temperature °C Type of cooling		Temperature °C ^{2) 3) 4)} Type of cooling	
1150 to 850	Air	1030 to 1110	Water, air	Austenite with a low content of ferrite

¹⁾ For simulative heat treated test pieces the temperatures for solution annealing have to be agreed.

²⁾ Solution annealing is in applicable, if the conditions for the hot forming and the concluding cooling are in such a way that the requirements for the mechanical properties of the product can be maintained.

- ³⁾ If heat treatment is carried out in a continuous annealing furnace, usually the upper area of the mentioned temperature range is preferred or even exceeded.
- ⁴⁹ For heat treatment within subsequent processing, the lower area of the stated temperature range for solution annealing has to be aspired, as otherwise the mechanical properties could be affected. If the lower limit for the solution annealing temperature was not undercut during hot forming, while repeating annealing a temperature of 1000 °C as the lower limit is sufficient.

Processing / Welding

Standard welding processes for these steel grades are:

TIG–welding Arc welding (E) MAG–welding solid wire Submerged arc welding (SAW) Laser beam welding

Process	Filler metal								
	sim	nilar	higher alloyed						
TIG	Thermanit GE-316 L	1.4430	Thermanit A Thermanit 18/17 E	1.4576 1.4440					
MAG solid wire	Thermanit GE-316 L Si	1.4430	Thermanit A Si Thermanit 18/17 E	1.4576 1.4440					
Arc welding (E)	Thermanit GE Spezial Thermanit GEW 316 L-17	1.4430 1.4430	Thermanit A Spezial Thermanit AW Thermanit 18/17 E Thermanit 18/17 EW	1.4576 1.4576 1.4440 1.4440					
SAW	Wire Thermanit GE-316L	Powder Marathon 431 Marathon 213	Wire Thermanit A Thermanit 18/17 E	Powder Marathon 431+213 Marathon 104					
Laser beam welding	See page 3	•							

When choosing the filler metal, the corrosion stress has to be regarded, as well. The use of a higher alloyed filler metal can be necessary due to the cast structure of the weld metal.

A preheating is not necessary for this steel. A heat treatment after welding is normally not usual.

Austenitic steels only have 30 % of the thermal conductivity of non-alloyed steels. Their fusion point is lower than that of non-alloyed steel therefore austenitic steels have to be welded with lower heat input than non-alloyed steels. To avoid

ThyssenKrupp

ThyssenKrupp Materials International

overheating or burn-thru of thinner sheets, higher welding speed has to be applied. Copper back-up plates for faster heat rejection are functional, whereas, to avoid cracks in the solder metal, it is not allowed to surface-fuse the copper back-up plate.

This steel has an extensively higher coefficient of thermal expansion as non-alloyed steel. In connection with a worse thermal conductivity a greater distortion has to be expected.

When welding 1.4404 all procedures, which work against this distortion (e. g. back-step sequence welding, welding alternately on opposite sides with double-V butt weld, assignment of two welders when the components are accordingly large) have to be respected notably. For product thicknesses over 12 mm the double-V butt weld has to be preferred instead of a single-V butt weld. The included angle should be 60° - 70°, when using MIG-welding about 50° are enough. An accumulation of weld seams should be avoided. Tack welds have to be affixed with relatively shorter distances from each other (significantly shorter than these of non-alloyed steels), in order to prevent strong deformation, shrinking or flaking tack welds. The tacks should be subsequently grinded or at least be free from crater cracks.

1.4404 in connection with austenitic weld metal and too high heat input the addiction to form heat cracks exists. The addiction to heat cracks can be confined, if the weld metal features a lower content of ferrite (delta ferrite). Contents of ferrite up to 10 % have a favorable effect and do not affect the corrosion resistance generally. The thinnest layer as possible have to be welded (stringer bead technique) because a higher cooling speed decreases the addiction to hot cracks. A preferably fast cooling has to be aspired while welding as well, to avoid the vulnerability to intergranular corrosion and embrittlement.

1.4404 is very suitable for **laser beam welding** (weldability A in accordance with DVS bulletin 3203, part 3). With a welding groove width smaller 0,3 mm respectively 0,1 mm product thickness the use of filler metals is not necessary. With larger welding grooves a similar filler metal can be used. With avoiding oxidation within the seam surface during laser beam welding by applicable backhand welding, e. g. helium as inert gas, the welding seam is as corrosion resistant as the base metal. A hot crack hazard for the welding seam does not exist, when choosing an applicable process.

1.4404 is also suitable for **laser beam fusion cutting** with nitrogen or flame cutting with oxygen. The cut edges only have small heat affected zones and are generally free of micro cracks and thus are well formable. While choosing an applicable process the fusion cut edges can be converted directly. Especially, they can be welded without any further preparation.

While processing only stainless tools like steel brushes, pneumatic picks and so on are allowed, in order to not endanger the passivation.

It should be neglected to mark within the welding seam zone with oleigerous bolts or temperature indicating crayons. The high corrosions resistance of this stainless steel is based on the formation of a homogeneous, compact passive layer on the surface. Annealing colors, scales, slag residues, tramp iron, spatters and such like have to be removed, in order to not destroy the passive layer.

For cleaning the surface the processes brushing, grinding, pickling or blasting (iron-free silica sand or glass spheres) can be applied. For brushing only stainless steel brushes can be used. Pickling of the previously brushed seam area is carried out by dipping and spraying, however, often pickling pastes or solutions are used. After pickling a carefully flushing with water has to be done.

Remark

In quenched condition the material can be slightly magnetizable. With increasing cold forming the magnetizability increases.

ThyssenKrupp Materials International

Editor

THYSSENKRUPP MATERIALS INTERNATIONAL GMBH Technical Sales / Quality Management Am Thyssenhaus 1 45128 Essen

References

DIN EN 10088-2:2005-09 DIN EN 10088-3:2005-09 DIN EN 10216-5:2004-11 DIN EN 10217-7:2005-05 MB 821 "Properties" MB 822 "The converting of stainless steel" DVS bulletin 3203, part 3 Beuth Verlag GmbH, Postfach, D10772 Berlin

MB 821 "Properties"Informationsstelle Edelstahl Rostfrei, Postfach 10 22 05,MB 822 "The converting of stainless steel"D-4013 DüsseldorfDVS bulletin 3203, part 3Verlag für Schweißen und Verwandte Verfahren DVS Verlag GmbH,
Postfach 10 19 65, D-4010 DüsseldorfLaser beam electric arc cutting of stainless steelsThyssen Lasertechnik GmbH, Aachen

Laser beam – longitudinal welding of profiles of stainless steel Böhler Schweisstechnik Deutschland GmbH, Hamm

Important note

Information given in this data sheet about the condition or usability of materials respectively products are no warranty for their properties, but act as a description.

The information, we give on for advice, comply for the experiences of the manufacturer as well as our own. We cannot give warranty for the results of processing and application of the products.